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AK• Abstract

medial axis skeleton is a thin line graph that preserves the topology of a region. The skeleton
Lia often been cited as a useful representation for shape description, region interpretation, and object
recognition. Unfortunately, the computation of the skeleton is extremely sensitive to variations in the
bounding contour. Tiny perturbations in the contour often lead to spurious branches of the skeleton.
In this paper, we describe a robust method for computing the medial axis skeleton across a variety of
scales. The resulting scale-space is parametric with the complexity of the skeleton representation. The
complexity is defined as the number of branches in the skeleton. A set of curves is computed to represent
the bounding contour across a variety of complexity measures. The curves possessing larger complexity
measures represent greater detail than -urves with smaller measures. A medial axis skeleton is computed
directly from each contour. The result is a set of skeletons that represent only the gross structure of the
region at coarse scales (low complexity), but represent more of the detail at fine scales (high complexity).
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1 Introduction In this paper, we consider a robust method for com-
h puting the medial axis skeleton across a variety of scales.

The medial axis skeleton is a thin line graph that pre- The scale-space is parametric with the complexity of the
serves the topology of a region. The skeleton has of- skeleton. The complexity measure is defined as the num-
ten been cited as a useful representation for shape de- ber of branches of the skeleton.
scription, region interpretation, and object recognition. The complexity of the skeleton is related to the corn-
The skeleton provides a decomposition of the region into plexity of the bounding contour. The complexity of the
salient subparts. It also provides a description of the contour is measured by the number of extrema of curva-
connectivity of the subparts. ture contained in the contour[3]. As we shall see, there is

Unfortunately, the computation of the skeleton is ex- a formal relationship between the complexity measure of
tremely sensitive to variations in the bounding contour the contour and that of the skeleton. Thus, minimizing
of a region. Tiny perturbations in the contour often lead the contour complexity is tantamount to minimizing the
to spurious branches of the skeleton. It is non-trivial to skeleton complexity.
determine which of the branches are spurious and which A set, of curves is computed to represent the bound-
correspond to significant subregions. ing contour across a variety of complexity measures. The

There have been numerous attempts to find a robust curves possessing larger complexity measures represent
algorithm for computing the medial axis skeleton (see, greater detail than curves with smaller measures. A me-
for example, [1], [2], [4], [5], [6], [9], [10], [13]). Most dial axis skeleton is computed directly from each contour.
algorithms use some deviation of morphological thin- The result is a set, of skeletons that represent, only the
ning. Often, spurious branches are eliminated based gross structure of the region at coarse scales (low con-
upon some approximate property of the bounding con- plexity), but they represent more of the detail at fine
tour, or based upon some property of the branch itself. scales (high complexity).

One common problem with previous approaches is In Section 2, we discuss the concept of complexity
that the resulting skeleton is inconsistent with the in greater detail. In Section 3, we briefly consider an
bounding contour or the region from which it was coin- analytical representation for contours; the contour rep-
puted. Inconsistencies between the representations of resentation paradigm is essential for computation of the
the skeleton and the contour may lead to inconsistent scale-space. In Section 4, we consider the computation
inferences in higher level processes. If such inconsisten- of the medial axis skeleton directly from the bounding
cies could be eliminated, the performance of higher level contour. In Section 5, we define a scale-space for the
processes would be improved, medial axis skeleton that is based on the complexity

Another problem with previous approaches is that the measure. In Section 6, we discuss the benefits of the
results are typically mediocre. Most algorithms are only complexity scale-space for the medial axis skeleton and
capable of handling simple objects like pseudopods, foraei- compare the scale-space with the minimum description
example[9]. These algorithms fail because they are in- length approach.
capable of distinguishing between "noise" in the data
and subtle features that may exist on the contour. As a 2 Complexity
result, most algorithms tend to produce skeletons with
spurious branches, or they tend to provide skeletons that The complexity of an object may be viewed as the num-
are unduly simplified. ber of primitive components of the object. Similarly, the

Because computation of the skeleton is so sensitive, complexity of a representation of an object may be mea-
it is desirable to represent the skeleton across a variety sured by the number of subparts contained within the
of scales. The multiple scale description eliminates the representation. In this section we seek to formalize this
need to determine the "optimal" scale by some artificial notion of complexity for contours and the medial axis
means. Attempts to find an optimal scale parameter skeleton.
in this and other contexts typically yield only marginal Hoffman and Richards[7] have proposed the use of
results. codons to decompose a contour into salient parts. They

Ideally, a scale-space for the medial axis skeleton observe that minima of curvature of a contour serve as
would provide representations of the skeleton with vary- natural break points of the curve. Therefore, the curve
ing levels of detail. At finer scales, the skeleton would is broken into sections that are bounded by extrema of
have a larger number of branches; a greater number of curvature. These sections are called codons. Pairs of
features would be represented. At more coarse scales, the codons typically correspond to subjective parts of the
skeleton would have fewer branches; the skeleton would region bounded by the contour.
represent only the gross structure of the region. Given this insight, the number of codons contained

The key to obtaining a multiple scale representation in the contour is a reasonable measure of the number
for the skeleton is to determine which branches should of subjective features of the region bounded by a con- E -
be eliminated as the algorithm moves from fine to coarse tour. Therefore, the number of codons contained in the C3
scales. Furthermore, it is necessary to determine the ap- contour is a suitable measure of the complexity of the
propriate position of the skeleton branches so that they curve. Conveniently, the number of codons contained in
accurately depict the structure of the region. Finally, it the contour is equal to the number of extrema of curva-
is desirable to modify the bounding contour of the region, ture of a closed contour.
simultaneously, so that each skeleton in the scale-space Similarly, the complexity measure of the medial axis --
corresponds to a consistent bounding contour. 1 skeleton is the number of branches of the skeleton. Each ,,413
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branch of the skeleton corresponds to a subregion of the Any reasonably well-behaved contour may be approx-
region bounded by the contour. A region possessing a inmated by a list of pairwise tangent circular arcs. This
larger number of subregions is more complex than a re- representation provides the ability to represent the posi-
gion possessing a smaller number of subregions. tion. orientation, and curvature of t he contour explicitly.

The complexity measure for contours is related to the The representation facilitates the computation of a varn-
complexity measure of the medial axis skeleton. Each ety of mathematical properties of the contour. In partic-
branch of the skeleton that terminates into the contour, ular, the contour representation facilitates trhe computa-
rather than into a node of the skeleton, does so at a tion of an analytical representation of the skeleton.
positive maximum of curvature. Therefore, an upper We assume that a list, of data points representing the
bound for the number of branches in the skeleton may location of points along the bounding contour is avail-
be obtained from the number of extrema of curvature able. The algorithm constructs ant arbitrary, initial con-
of the bounding contour. If the number of extrema of tour that, passes through each point. The initial contour
a particular curve is AI, then there are at most M/2 is transformed into a more desirable one by applying a
positive maxima of curvature. Therefore, there are no set of deformations to the contour, as described below.
more than AI/2 branches that terminate into the con- There are three local deformations of particular inter-
tour. Each of these terminal branches intersects another est.. The first operation is the deformation of the curva-
branch at a node and a third branch emanates from the ture of a single arc. The second operation is the rotation
node. This branch may or may not, be a terminal branch. of two neighboring arc-. The third operation is the split.-
In the worst, case, the number of non-terminal branches ting of a single arc into two arcs. These operations are
is M/2 - 2. Therefore, the complexity of the skeleton, illustrated in Figure 1.
B, is no larger than M - 2. The deformation of the curvature of a single arc is

A similar argument may be made for a region with accomplished under the constraint that its neighboring
holes. First, consider the skeleton associated with the arcs remain fixed. This operation has one degree of free-
bounding contour without holes. From above, the skele- dom. As the radius of curvature of the arc changes, the
ton associated with the bounding contour has complexity center of curvature is constrained to move along a curve
M - 2. Now add the holes one by one and consider the that is a conic section. This constraint is a result, of the
resulting skeleton. Each time a hole is added, the num- fact that the arc of interest must remain tangent to its
ber of branches increases by no more than three. Thus, neighbors. The deformation of the curvature of a single
the maximum number of skeleton branches for a region arc is illustrated in Figure la.
with holes is M + 3H -2, where H is the number of holes. The rotation of two neighboring arcs is accomplished

More importantly, if the bounding contour is de- under the constraint that the neighbors of the two rotat-
formed continuously in such a way that the complex- ing arcs remain fixed. The radii of curvature of the arcs
ity measure decreases, the complexity measure of the of interest also remain fixed; only the position of cen-
corresponding skeleton almost always decreases. Equiv- ters of curvature are modified. Because the arcs must
alently, reducing the number of extrema of curvature of remain tangent to their respective neighbors, the center
the bounding contour almost always causes the number of curvature of each of the arcs is constrained to lie on
of branches of the skeleton to decrease. a circle whose center is coincident with the center of the

There is a tradeoff between the descriptive power of a respective neighbor. Furthermore, the positions of the
representation and the complexity of the representation. two arcs of interest must be modified in such a way that
If the complexity is allowed to be arbitrarily large, any they remain tangent to each other. The rotation of two
set of data may be represented. On the other hand, neighboring arcs is illustrated in Figure lb.
limiting the complexity restricts the class of shapes and Splitting -.n arc into two is accomplished under the
objects that may be represented. In Section 5, we exploit constraint that the two arcs must be tangent to each
this tradeoff to define a scale-space for the medial axis other and each of the arcs is tangent to one of the neigh-
skeleton that is similar to a complexity scale-space for bors of the original arc. As stated, the deformation
contours. In the next two sections, has three degrees of freedom. An additional constraint
we consider an analytical representation for contours and is imposed to reduce the complexity of the calculation.
the computation of the medial axis skeleton directly from The point of tangency between the two new arcs is con-

the representation. strained to lie on a line specified by the algorithm. The
choice of the constraint line is dependent on the context
of the computation. Splitting an arc into two arcs is

3 Analytical Representation of the illustrated in Figure 1c.

Bounding Contour The complexity of a contour, M, is defined as the
number of extrema of curvature present on the contour.

The complexity scale-space for the medial axis skeleton Subjective parts of a region are delimited by negative
is based upon the complexity scale-space for contours[3]. extrema of curvature on the bounding contour[7]. The
In this section, we briefly consider an analytical repre- number of such parts is limited by the number of ex-
sentation for contours that makes computation of the trema of curvature. Therefore, the number of extrema
scale-space possible. We define the contour represen- of curvature on a contour is related to the number of
tation and consider primitive operations for deforming subjective parts of the interior of the contour.
a contour. A scale-space for contours based upon the
complexity measure of the contour is also described. 2



A scale-space is constructed based on the complexity tation paradigm is described in more detail in an earlier
measure. At finer scales, the contour is depicted with a paper[3].
higher complexity measure. Thus, more detail is repre-
sented. At more coarse scales, the contour is depicted 4 Computation of the Medial Axis
with a lower complexity measure. Fewer extrema of cur- Skeleton
vature are present in the contour. Consequently, less
detail is present and only the gross structure of the con- The medial axis skeleton may he computed directly from
tour is represented. At, each scale, the contour is chosen the analytical contour representation. In this section,
to minimize the square-error under the constraint, that. we consider the mechanics of the computation. First,
it has the appropriate complexity measure. we consider a number of useful general properties of the

The computation of the scale-space is performed in skeleton and its bounding contour. Next. we consider
two stages. In the first stage, a curve with the minimum properties of the skeleton when the contour is made up
complexity measure is computed under the constraint of pairwise tangent circular arcs. Finally, we consider the
that the curve passes within a specified tolerance, 6, of computation of the skeleton from the analytical contour
each data point. The value, 6, acts as the scale parame- representation.
ter. If 6 increases, the complexity of the curve decreases The medial axis skeleton is usually defined as the locus
and less detail is represented. In the second stage, the of points where wavefronts propagating inward from the
curve that is closest, to the data in the square-error sense bounding contour meet (see, for example, [9]). The skele-
is computed under the constraint that the curve has the ton points are locations where two or more wavefronts
complexity measure found in the first stage. have propagated the same distance from their respective

In the first stage, deformations of the curve are chosen starting locations. This definition suggests niorpholog-
to minimize the difference in curvature between neigh- ical operators that approximate the propagation of the
boring extrema. The curvature of each arc associated wavefront.
with a maximum is decreased until it is not possible to The medial axis skeleton may also be defined by
do so without moving the curve outside the tolerance of the following properties: Each point on the skeleton is
one of the data points. Similarly, the curvature of each equidistant from two or more points on the bounding
arc associated with a minimum is increased. During the contour. There are no points on the boundary closer to
course of this operation, the number of extrema is re- the skeleton point than these equidistant points. And,
duced when neighboring maximum-minimum pairs are each skeleton point lies in the interior of the bounding
modified such that their respective curvature values are contour.
equal. This alternate definition is mathematically equivalent

to the wavefront definition. The distance from each
In the second stage, deformations of the curve are

chosen to minimize the square-error between the curve skeleton point to the closest points on the contour is

and the data points. The computation proceeds under the distance traveled by the associated wavefronts. As
the constraint that the complexity is not changed by we shall see, the alternate definition is constructive; it
any of the deformations. During each iteration, all the leads to a novel method of computing the skeleton.
arcs are modified locally to reduce the square-error. The Each point that is on a branch of a skeleton, but not
algorithm iterates until it is no longer possible to reduce a node, is equidistant from exactly two points on the

the error. contour. Each node point is equidistant from three or

The result of the two-stage computation is the mini- more points on the bounding contour. Typically, a node

mum complexity, least square-error contour. The con- is equidistant from exactly three boundary points. The
to ur h as th e mi n m u m co m lexi y p ssi l e nd e th case w h ere th e n o d e is eq u id ista n t fro m m o re th a n th ree

tour has the minimum complexity possible under the ponsiazeomsuecdto.
constraint that the curve lies within 6 of each data point, points is a zero measure condition.The urv ha th leat suar-eror o an cuve hat For each point on the branch of the skeleton there is
Thecurehas the se leity mesuare.r oa circle that is tangent to the contour in two places. The

contou ise scenter of the circle is coincident with the point on theA multiple scale representation of the contour is branch. The radius of the circle is the distance from the
achieved by computing contours with a variety of com- center to the two nearest points on the contour. Aside
plexity measures. This is accomplished by varying the from the two tangent points, the circle does not contact
scale parameter, 6. At larger values of 6, the curve has the contour. We call such a circle the interior circle of
a lower complexity measure and only the gross structure the point of interest. We call the two points of tangency
of the contour is represented. At smaller values of 6, the between the interior circle and the contour the tangent
curve has a higher complexity measure and more of the points of the interior circle.
details are represented. The silhouette of an airplane at Similarly, for each node point, there is a circle that is
two scales is depicted in Figure 2. tangent to three (or more) points on the contour. The

The analytical representation paradigm provides a ro- center of the circle is coincident with the node point and
bust method for describing a contour and its mathemat- the radius is the distance from the node to the three
ical properties. In particular, the curvature of the con- nearest points on the contour. Aside from these tangent
tour is represented explicitly. This facilitates the compu- points, the circle does not contact the contour. Such a
tation of a novel scale-space for contours. Furthermore, circle is called the interior circle of the node.
the paradigm facilitates the computation of a novel scale-
space for the medial axis skeleton. The contour represen- 3



As a branch of the skeleton is traversed, the radius The choice is made between candidate point.I and cani-
of the interior circle varies continuously. Stated another didate point2 by determining which point is closer to
way, the distance from a skeleton branch to the contour the previous branch segment end point along the conic
varies continuously along the branch. Furthermore, as curve. Conveniently, there is a simple computational test
the branch is traversed, each tangent point, of the in- to determine the appropriate point. If candidate point I
terior circle moves continuously along the contour. In is within the sector of arc2, pointl is the appropriate
the case where the branch terminates into the contour, choice. Similarly, if candidate point2 is within the sec-
rather than into a node, the two tangent, points converge tor of arcl, point2 is the appropriate choice. The case
with the branch at a point of maximum curvature on the that both of these conditions are true is zero-measure.
contour. Furthermore, in that case candidate point I and candi-

Each branch of the skeleton that terminates into the date point2 are coincident.
contour does so at a positive maximum of curvature. It Once the end points of the segments have been deter-
is not the case, however, that each positive maximum of mined, it is possible to characterize the segment between
curvature is associated with a branch termination. There the end points. The branch segment is known to be a
is a simple test to determine if a positive maximum is conic section. It is possible to determine the type of the
associated with the termination of a branch. If the os- conic section (hyperbola, ellipse, or parabola) by consid-
culating circle associated with the curvature maximum ering the relationship of the associated contour arcs and
lies completely in the interior of the contour or on the their respective curvatures. The foci of the conic section
contour, there is a branch that terminates at the max- are coincident with the centers of the contour arcs. Be-
imum. Otherwise, there is no terminus. The terminus cause the end points of the branch segment lie on the
test is illustrated in Figure 3. conic section, they provide the remaining information

Now, consider a contour that consists of pairwise tan- necessary to construct the segment analytically.
gent circular arcs, as described in Sction 3. At any point Each branch of the skeleton is computed in a piecewise
on the skeleton, the tangent points lie on two particular fashion as described above. Each segment of the branch
arcs of the contour representation. Locally, the points on corrsponds to two arcs on the curve; the tangint points
the skeleton branch are equidistant from these two arcs. associated with each point in the branch segment lie on
A locus of points that is equidistant from two circles is these two arcs. Two neighboring segments always share
a conic section. Therefore, the medial axis skeleton con- one arc; the other arcs associated with the two neigh-
sists of segments of curves that are conic sections. We boring segments are neighbors on the contour. In the
call such a curve segment a conic segment of the skele- example shown in Figure 4, the segment of interest is
ton branch. The analytical contour representation leads associated with arc 1 and arc2. The neighbor of I his seg-
directly to an analytic representation for the medial axis ment is associated with arcl and the neighbor of arc2.
skeleton. In effect, as the branch is traversed during compu-

Because the conic segments of the skeleton are well tation, the tangent points on the contour are implicitly
characterized, it is convenient to compute the skeleton in traversed as well. The tangent points associated with
a piecewise fashion. The key to computing this represen- each point on a branch segment are easily computed.
tation is finding the end points of the branch segments. One of the tangent points is simply the projection of the
At an end point of a branch segment, one of the tangent branch point onto one of the arcs associated with the
points of the interior circle is guaranteed to be coincident segment. The other tangent point is the projection of
with the point of tangency of two neighboring contour the branch point onto the other arc.
arcs. Therefore, the segment end point must lie on the Each point on the contour is associated with exactly
line determined by the radius of the circle corresponding one point on the skeleton. It is not possible for two
to the end angle of the arc. distinct skeleton points to have the same tangent point.

Assume that in some intermediate stage of the com- This property of the skeleton is useful for determining
putation, a branch segment end point has been found. the location of node points on the skeleton, as we shall
The arcs associated with the next branch segment are see.
called arcl and arc2, arbitrarily. The line determined The skeleton computation begins by determining
by the center of arcl and the end point of arcl is called starting points for candidate skeleton branches. Because
linel. The line determined by the center of arc2 and the it is known that branches terminate into the bound-
end point of arc2 is called line2. Assume, without loss of ing contour at positive maxima of curvature, these lo-
generality, that the branch segment is hyperbolic. There cations are chosen for the starting points. As these can-
are two possibilities for the location of the next segment didate branches are extended, the locations of intersec-
end point. The end point may coincide with the intersec- tions of the branches are found. At the intersections of
tion of the hyperbola and linel (candidate point1). Or, two branches, a candidate node is formed and an addi-
the end point may coincide with the intersection of the tional candidate branch is created that emanates from
hyperbola and line2 (candidate point2). The appropri- the node. During the computation, some of the candi-
ate choice of the two candidate points is the one closest date branches are eliminated when it is determined that
along the hyperbola to the known end point. Note that no branch exists at its location.
the same reasoning would also apply to a branch seg- At each positive maximum of curvature on the bound-
ment that is an ellipse or a parabola. This geometric ing contour, a candidate skeleton branch is created. By
situation is illustrated in Figure 4. convention, the initial branch segment is the bisecting



radius of the arc associated with the maximum of cur- circle does not contact arc2. In Figure 5c. point p:s is
vature. Strictly speaking, such a segment is not part the intersection of the two segments: the interior circle
of the medial axis skeleton as defined mathematically, is tangent to all three contour arcs.
However, these segments are included by convention be- This test may ibe used to determine if two tail seg-
cause doing so yields more intuitively pleasing results. nients with a common arc intersect. The test is applied

Each segment is extended in a piecewise fashion as to both endpoints for each segment. 'rhe segments inter-
described above. As the computation proceeds, the algo- sect if and only if the intersection test provides opposite
rithm must determine the locations where the branches answers for each endpoint of both segments. That is.
intersect to form nodes. Each time a branch is extended, one endpoint of segment I is beyond the intersection and
the algorithm determines if the branch is overextended the other endpoint is not. Similarly. one endpoint of seg-
relative to another branch. In addition, the algorithm ment2 is beyond the intersection and the other is not.
must determine if the other branches are overextended When two segments intersect, the node point may be
relative to the branch of interest. Ultimately, the algo- found using the intersection test recursively. Initially.
rithin must determine the locations of intersections of the intersection is known to be between the two original
branches, that is, the nodes of the skeleton. The follow- endpoints of segment I. We arbitrarily call these points
ing set of conventions achieve these goals. the upper and lower bound points of the node. The in-

After a branch has been extended by a single segment. tersection test is applied to a point midway between the
the algorithm determines what interaction, if any, occurs bound points. If the midpoint is beyond the intersection.
between the branch and the other branches. Conceptu- the midpoint becomes the new upper bound. Conversely,
ally, the algorithm determines if the tangent points of the if the midpoint is not beyond the intersection, the mid-
branch have crossed any of the tangent, points associated point becomes the new lower bound. This process is
with any other branch. In practice, the algorithm con- repeated until bound points converge to the node.
siders only those branches that have arcs of the contour It is also possible during the computation that the
in common with the branch of interest. More specifi- entire tail segment of a particular branch has been ex-
cally, the algorithm only considers branches whose tail tended beyond the intersection of the branch (branch l)
segments (i.e. end segments) have an arc in common with another branch (branch2). Again, the intersection
with the tail segment of the branch of interest, test is used to distinguish this situation. The test is ap-

If the tail segments of two branches have a contour plied to both endpoints of the tail segment, of branchl.
arc in common, the systematic application of a simple If the test determines that both endpoints are beyond
test determines the interaction between the branches. the intersection, the entire tail segment is beyond the
The test determines if either or both of the branches intersection. In that case, the tail segment is removed
have been extended beyond the intersection between from the branch representation.
branches. Furthermore, these tests are used to find the Note that extending a particular branch is a local op-
node point which is located at the intersection of two eration. It is not necessary to consider the entire bound-
segments. This test, described below, is illustrated in ing contour to perform the computation. In fact, only
Figure 5. two arcs of the contour are required for each step. This

By convention, the arc associated with both of the suggests that the branches could be computed indepen-
tail segments is called the common arc. We arbitrarily dently, in parallel. Of course, if a branch is extended
refer to one of the branches as branch 1 and the other as such that its tail segment has an arc in common with
branch2. Similarly, segmentl and segment2 are the cur- another tail segment, the branches must interact in the
rent tail segments of the respective branches. Arcl and manner described above. That is, they must determine if
arc2 are the arcs associated with segment 1 and segment2 either of the branches is overextended and if the branches
that are not the common arc. intersect at a node.

The intersection test determines if an arbitrary point In our discussion, we have tacitly assumed that the
on candidate segmentl is beyond the intersection of seg- region is bounded by a single simply connected curve.
mentl and segment2. The interior circle associated with That is, we have assumed that there are no holes in the
the point is constructed. By definition the interior cir- region. It is straightforward to generalize the algorithm
cle is tangent to arcl and the common arc- the center to handle regions with holes. To do so it is necessary
is located at the point of interest on segmentl. If the to find initial branches such that each segment has one
distance from the point to arc2 is greater than the ra- contour arc on an interior curve. (An interior curve is the
dius of the interior circle, the point of interest is beyond bounding curve of a hole.) The algorithm extends these
the intersection point. Conversely, if the distance from initial branches to find nodes similar to the extension of
the point of interest to arc2 is less than the radius of the branches described above.
interior circle, the point is not beyond the intersection of The initial branches associated with the interior
segmentl and segment2. Of course, if the distance from curves are found in the following manner: The point on
the point of interest to arc2 is equal to the radius of the the interior curve that is closest to the bounding curve
interior circle, the point is the intersection point, is determined. Simultaneously, the point on the bound-

The intersection test is illustrated in Figure 5. In ing contour that is closest to the interior curve is found.
Figure 5a, point P2 is beyond the intersection because The midpoint of these points lies on the initial candi-
the interior circle intersects arc2. In Figure 5b, point date segment for the initial branch. An interior circle is
Pi is not beyond the intersection because the interior constructed such that the center is the midpoint and the



radius is the distance between the midpoint and either of A scale-space representation is desirable because it
the contour points. The midpoint, lies on the skeleton if provides alternative descriptions for subsequent process-
and only if this interior circle does not intersect another ing. If a higher level process requires accuracy and dense
of the interior curves. information, a fine scale is appropriate. However, ifaccu-

In the case that the interior circle does intersect an- racy is not as critical and sparse information is sufficient,
other interior curve, an alternate starting point must a coarse scale is appropriate. In the latter case, the com-
be found. The alternate starting point is determined putational burden is often significantly reduced because
in the same manner described above, except that the the algorithm is required t.o process a smaller quantity
closest points between the two interior curves are found of data.
The midpoint between these two points is the new can- The construction of a scale-space requires a tradeoff
didate skeleton point. The new candidate point lies on between the accuracy and the level of detail in the de-
the skeleton if and only if no other interior curve inter- scription At fine scales, the tradeoff is skewed toward
sects the interior circle. In the event that the interior the accuracy of the desc-iption. At coarse scales the
circle does intersect another interior curve, the process tradeoff is skewed toward the simplicity of the descrip-
is repeated until an appropriate skeleton point is found. tion.
This procedure is guaranteed to provide a skeleton point The measure of this tradeoff is typically a smoothing
that is associated with each of the holes, parameter such as the spatial width of a Gaussian filter

Once a skeleton point has been found for each hole, a applied to the data (see, for example, [121). In such a
branch segment. is constructed that extends in both di- case, an increased spatial width of the filter reduces some
rections from each of the initial skeleton points. This seg- of the existing detail. The description is simplified, but
ment serves as the starting segment for an initial branch. the ability to localize the remaining components of the
Each of these branches is extended in both directions to description (the accuracy) is reduced.
find the appropriate nodes with other branches. Figure 6 In this paper, we propose an novel method of quanti-
illustrates the initialization of a skeleton corresponding fying the accuracy versus simplicity tradeoff. The trade-
to a region with holes. off yields a set of descriptions with varying complexity

Given the piecewise conic description of the skeleton, measures, as defined in Section 2. Each description is
it is possible to reconstruct the bounding contour ex- chosen such that it is as close as possible (in the square-
actly. For each segment, it is possible to reconstruct the error sense) to the data under the constraint that it has
two contour arcs associated with the segment. If the a particular complexity measure.
segment is hyperbolic or elliptic, the centers of the arcs In the case of a contour, we assume that a set of data
are determined by computing the locations of the foci of points along the contour has been provided. A set of
the hyperbola or ellipse. If the segment is parabolic, the contours is constructed such that each contour has a dif-
focus of the parabola is the center point of one arc; the ferent complexity. That is, each contour has a different
other arc is a straight line segment. The radii of the two number of extrema of curvature. Each of the contours is
contour arcs may be determined by considering the radii chosen such that it minimizes the square-error between
of any two interior circles along the conic segment. The data points and the contour under the constraint that
endpoints of the contour arcs are determined by project- the complexity measure is equal to a particular value.
ing the endpoints of the segment onto each arc. In the case of the medial axis skeleton, we also assume

The medial axis skeleton may be computed directly that a set of data points along the bounding contour has
from the analytical contour representation. The contour been provided. Again, a set of skeletons is constructed
representation leads naturally to the analytic represen- such that the skeletons have different complexity mea-
tation of the skeleton. Each branch of the skeleton is sures. The bounding contour is chosen such that the
piecewise elliptic, hyperbolic, or parabolic. The bound- square-error between the data and the contour is mini-
ing contour may be reconstructed exactly from the skele- mized under the constraint that the associated skeleton
ton. possesses the appropriate complexity measure. As we

shall see, the contour scale-space is very similar to the
5 The Medial Axis Skeleton skeleton scale-space.

Complexity Scale-Space Now, consider the computation of the contour scale-
space. If the contour is constrained to pass through each

In an earlier paper[3], we considered a complexity scale- data point exactly, there is a particular minimum com-
space for contours. In this section, we extend the concept plexity measure, M0 . It is not possible to construct a
to define a complexity scale-space for the medial axis curve that passes through every data point and has a
skeleton. We consider the computation of the skeleton complexity measure smaller than M0 . If the constraint
scale-space from the contour scale-space. is relaxed such that the curve must pass within some tol-

A scale-space is a set of descriptions that differ in erance, 61, of each data poitit, another minimum corn-
their level of detail. At coarse scales the descriptions are plexity measure, M 1, is obtained. Of course, M1 _< Mo.
relatively simple and, presumably, contain only the most Therefore, as the tolerance, 6, increases, the associated
important aspects of the description. At fine scales, the minimum complexity measure, M, decreases. Thus, the
descriptions are relatively complicated and contain the tolerance, 6, acts as a scale parameter for the complexity
details. scale-space.
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For any tolerance, 6i, there are infinitely many con- nomenon is illustrated in Figure 9.
tours that meet the tolerance requirement and possess Fortunately, a minor change in the contour smooth-
the minimum complexity measure, Mi. It is desirable ing criteria eliminates this effect. The first stage of the
to choose the curve that minimizes the square-error be- contour smoothing algorithm is identical; the curve is
tween the data and the contour from the class of rinm - modified to minimize the number of curvature extrema.
imum complexity curves. This suggests a two-stage al- In the second stage, an additional constraint is placed
gorithm for determining the desired minimum complex- on the computation. No deformations of the curve are
ity/least square-error curve, allowed that would introduce an additional branch ter-

In the first stage, an instance of the minimum comn- minus. The complexity of the skeleton is preserved in the
plexity contour is computed under the constraint that second stage, as well as the complexity of the contour.
the curve passes within 6i of each data point. The curve The change in the smoothing criteria has only a small
found in the first stage is used as the starting point for effect, on the flow of computation. In fact, the compu-
the second computational stage. The output, of the first tation need only be altered for arcs corresponding to
computational stage is illustrated in Figure 7 with the positive maxima of curvature. The computation for all
silhouette of an airplane as test, case. other arcs is identical to that for the original criteria.

In the second computational stage, the minimum comi- At each maximum of curvature that is not associated
plexity contour is modified such that square-error be- with a branch termination, it is necessary t.o ensure that
tween curve and the data points is minimized. The the osculating circle extends to the exterior of the con-
modification is performed under the constraint that. the tour. Recall that whenever the osculating circle does not
complexity measure does not change. The result is the extend to the exterior of the contour, a branch terminus
minimum complexity/least square-error curve. The fi- is guaranteed to occur at the maximum. Furthermore,
nal results for the airplane silhouette are depicted in whenever the osculating circle extends to the exterior of
Figure 8. The computation of the minimum complex- the contour, no branch terminus occurs at. the maximum.
ity/least square-error curve is described briefly in Sec- The most obvious method to avoid the introduction of
tion 3 and more fully in an earlier paper[3]. additional skeleton branches is to disallow deformations

As the tolerance parameter increases from scale to of the curve that would create a spurious branch. How-
scale, contours with smaller complexity measures are ever, this method places an unnecessary burden on the
found. Some of the details in the contour are eliminated computation. It would be necessary to test every can-
in the process; the more coarse representation is simpler. didate deformation at each iteration of the smoothing
The features that are present in the representation are process against this condition.
depicted as accurately as possible. However, the square- A more efficient method is to compute the least
error is guaranteed to increase because the contour is square-error curve as before, then modify that curve to
unable to account for all of the detail in the data. Thus, eliminate any spurious branches that have been intro-
as the contour becomes less complex, the accuracy of the duced. This method requires that the locations of the
representation decreases, branch termini are determined after the first stage of the

In the case of the airplane silhouette, the position of smoothing algorithm. After the second stage of the con-
the tip of each wing is accurately depicted across the en- tour smoothing algorithm, each maximum of curvature
tire scale-space. In contrast, at coarse scales, the protru- is tested to determine if there is a branch present. If
sions on the back of the wings disappear because they a branch has been introduced during the second stage
are smaller than the scale-parameter. The representa- of computation, the curve must be deformed locally to
tion is simpler, because only the gross structure of the eliminate the spurious branch.
wing is depicted. However, the error between To eliminate a spurious branch, it is necessary to de-
the data and the contour is significantly greater in the crease the curvature of the maximum curvature arc. The
proximity of the protrusions. This is an example of the arc is deformed under the constraint that the neighbors
tradeoff between simplicity and accuracy. remain fixed, as described in Section 3. The arc is mod-

It would be reasonable to base the skeleton scale-space ified until its osculating circle contacts another portion
directly on the contour scale-space. One option is to of the curve; the branch is eliminated. We call the addi-
compute the contour at multiple complexities. For each tional point of contact of the osculating circle with the
contour, the corresponding skeleton is computed. As the contour the alternate contact point.
complexity of the contour decreases, the complexity of Once the branch is eliminated, it is desirable to mod-
the skeleton is guaranteed to decrease. This yields a ify the curve locally to reduce the square-error. Such
reasonable scale-space for the medial axis skeleton. modifications are carried out under the constraint that

However, there is at least one case where the above the osculating circle does not lose contact with the con-
definition of the skeleton scale-space leads to a counter- tour at the alternate contact point. This computation
intuitive result. This definition does not penalize the may be accomplished locally in the sense that operations
magnitude of the curvature; only the number of extrema need information only about arcs that are near the max-
of curvature is considered. Thus, the algorithm prefers a imum and the arc associated with the alternate contact
curve with relatively large curvature if such a choice re- point. No other arcs of the contour need be considered.
duces the square-error, even if the reduction is small. In The result of these computations is a scale-space rep-
some cases, this results in an additional skeleton branch resentation for the medial axis skeleton. At a relatively
that terminates into the curvature maximum. This phe- 7 coarse scale, a skeleton that represents only the gross



structure of the interior of the bounding contour is pro- representation, it is depicted as accurately as possible.
vided. At a relatively fine scale, a skeleton that. repre- For example, the location of the tip either wing of the
sents more of the details is provided. The scale-space is airplane depicted in Figure 8 is represented accurately
illustrated in Figure 10 for the silhouette of an airplane. across the entire scale-space. Of course, there is still a

In the case of the airplane silhouette, the gross struc- reduction in the overall accuracy of the representation
ture of the airplane is depicted across the entire scale- at coarse scales because. for example, the protrusions on
space. At the coarse scales, the protrusions of the wings the back side of each wing are not depicted at the coarse
are not present in the skeleton. However, the gross scales.
structure of the wings is accurately represented. At, the II general, it is more difficult to obtain a true seal,-
finest scale, the protrusions are present and accurately space representation than a resolution-space. It is mi,,n-

depicted. trivial to obtain a formal tradeoff between the simplicity
Often, the contours obtained from the contour scale- of a description and the accuracy. Whenever possille,

space are identical with the bounding contours from the it is desirable obtain a true scale-space representation.
skeleton scale-space. However, there are cases where a Of course, resolution-spaces are useful to the extent that
contour may be modified such that an additional branch they approximate the desired behavior of a scale-space.
appears (or disappears) in the skeleton without changing Furthermore, at each scale, the branches that are
the number of extrema of curvature in the curve. In these present are represented as accurately as possible. That
cases, the bounding contour of the skeleton scale-space is, each branch corresponds to a portion of the curve
differs slightly from that of the contour scale-space. that is as close as possible to the data in the square-

For each type of scale-space, a set of descriptions with error sense. The accuracy of the representation of each
varying levels of detail is obtained. The tradeoff between branch is not diminished from one scale to the next. For
complexity and proximity to the data is quantified in example, the ability to localize the tip of either airplane
terms of a tolerance about each data point. Each rep- wing in Figure 10 is not diminished at any scale.
resentation is as accurate as possible in the square-error Another advantage of the complexity scale-space for
sense under the constraint of minimum complexity. The the medial axis skeleton is that the skeleton is consis-
contour scale-space and the skeleton scale-space are sirn- tent with the contour representation. The mapping be-
ilar; the difference lies in a slight inconsistency of the tween the contour and the skeleton is unique and in-
complexity measures. vertible. In contrast, most methods of computing the

medial axis skeleton yield a result that is inconsistent
6 Discussion with the bounding contour; construction of a curve from
Most. "scale-space" representations would be more accu- the skeleton would lead to a curve that differs from the

rately described by the term resolution-space. Typically, original bounding contour.

such resolution-spaces are parameterized by the spatial Consistency among representations is desirable be-

width of some filter, (usually a Gaussian filter, for ex- cause higher level processes may make inferences based

ample [12]). Subjective features are eliminated from the upon properties of the contour or the skeleton. If the

representation as the data is blurred. For example, at a representations are consistent, such a higher level pro-

fine scale a particular feature may be represented accu- cess is less likely to make incompatible inferences about

rately. At a coarse scale, the feature may be eliminated, the data. Such incompatible inferences would lead to

as desired. However, at an intermediate scale, the fea- degradation of the overall system performance.
ture may exist with degraded accuracy. There is no ad- The complexity scale-space is similar to the minimum
vantage to representing particular atomic features with description length (MDL) approach at an intuitive level.
varying degrees of accuracy. The idea of providing the simplest possible representa-

A true scale-space provides descriptions of the data tion is present in both approaches. However, the for-
with varying levels of detail. At each scale, all features mal definition of complexity is different in the two ap-
are represented as accurately as possible. Given that a proaches. As a result, there are significant conceptual
feature is present at two scales, there is no advantage differences between the complexity scale-space and the
in reducing the accuracy of localization of the feature MDL paradigm.
from one scale to the next. It is more desirable to retain The MDL criterion requires that the number of pa-
the accuracy of the representation from one scale to the rameters employed by a model to account for the data
next, until a feature is eliminated altogether. should be minimized[11). More precisely, the number of

The complexity measure yields a true scale-space for bits required to encode the data is minimized. Thus,
the medial axis skeleton. At finer scales, greater detail an important component of the MDL approach is the
is represented. At coarse scales, only the gross structure choice of an efficient model for the representation. For-
of the skeleton is represented. The complexity criterion mally, the MDL approach requires that the represen-
explicitly guarantees that the skeleton becomes simpler tation correspond to an optimal code in the information
at coarse scales. theoretic sense. A theory for choosing the representation

The medial axis skeleton complexity scale-space offers from a priori probability distributions is well known (see
a novel approach to the trade-off of accuracy and simplic- Leclerc[8], for example).
ity. The tradeoff occurs between the number of subjec- Unfortunately, the determination of such an optimal
tive features and the square-error between the data and code for a general application is difficult in practice.
the representation. Whenever a feature is present in the Typically, minimum description length approaches as-



sume a particular form of the representation. The nuni- diminished from one scale to another unless the feature is
"ber of parameters employed by the representation is riin- completely elinated. The representation for the skele-
imized. Interestingly, the MDL theory provides a simple ton is consistent with the corresponding representation
objective measure of the performance of a particular rep- of the hounding comitour; the mapping between the skele-
resentation. The performance measure is, of course, the ton and the bounding contour is unique and invertible.
average length of the code.
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Figure 1: Local deformations of an analytic contour. In (a), the curvature of a single arc is modified under the
constraint that it remains tangent to its neighbors. In (b), two neighboring arcs are rotated under the constraint
that they remain tangent to their neighbors and to each other. In (c), an arc is split into two arcs. The two new
arcs are tangent to each other at a point along a specified constraint line.

(a) (b)

Figure 2: Contours at two different scales. In (a) a fine scale representation of the silhouette of an airplane is
depicted, in (b) a coarse scale representation. The small squares near each contour represent the original data points.
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(a) (b)

Figure 3: Test for the existence of branch terminating into a maximum of curvature. Each illustration depicts a
portion of a contour and its medial axis skeleton; the osculating circle for the maximum of curvature at the top of the
curve is also shown. In (a), no branch terminates into maximum of curvature because the osculating circle extends
to the exterior of the curve. In (b), a branch does terminate into the maximum of curvature because the osculating
circle remains in the interior of the contour.

P1 .. ... .... . .

..- ~arcl -..

Figure 4: Computation of a branch segment. The branch segment is the hyperbolic curve connecting point p0 to
point p2. The hyperbola is defined by the property that each point is equidistant from arc1 and arc2 (two arcs in the
contour representation). The candidate end point, pl, is the intersection of the end radius of arcl and the hyperbola.
Similarly, the candidate end point, p2, is the intersection of the end radius of arc1 and the hyperbola. The point,
p2, is chosen because it is within the sector of arcl - the point, pl, is not in the sector of arc2. The next segment
that would be computed extends beyond point, p2, and is determined by arc1 and the neighbor of arc2.
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Figure 5: Test for determining the location of node points. In each figure, three segments that intersect at a node
are depicted. The contour arcs associated with these segments are also depicted. Segmentl is equidistant from the
common arc and arcl; segment2 is equidistant from tiA common arc and arc2; and segment3 is equidistant from
arcl and arc2. Conceptually, segmentl and segment2 intersect to form a node; segment3 emanates from this node.
In (a) point P2 is beyond the intersection of segmentl and segment2: the interior circle is tangent to the common
arc and the interior circle intersects arc2. In (b), point p1 on segment 1: the interior circle is tangent to the common
arc and arcl, and the interior circle does not intersect arc2. In (c), point p3 is the intersection between segmentl
and segment2: the interior circle is tangent to all three contour arcs.
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(c)

Figure 6: Skeleton for a region with holes. The computation of a skeleton for a region with two holes is shown. In (a),
the initial skeleton points associated with the interior curves are depicted along with their respective interior circles.
In (b), the initial segments are extended from the initial points. These segments serve to initialize the skeleton
branches for the computation. In (c), the skeleton associated with the region is shown.
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Figure 7: Minimum complexity curves for the silhouette of an airplane. Each curve is an instance of a minimum
complexity curve for a particular tolerance value. The circles that are tangent to the curve are centered about
a particular critical data point. The radius of each of these circles is equal to 6, the scale parameter. The scale
parameter for each case is (a) 6 = 2.0, (b) b = 4.0, (c) 6 = 8.0, and (d) 6 = 16.0.
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Figure 8: Minimum complexity/least-square-error curves for the silhouette of an airplane. In each case the least-
square error curve that has the complexity determined from the first stage of the computation is shown. The scale
parameter for each case is (a) 6 = 2.0, (b) 6 = 4.0, (c) 6 = 8.0, and (d) 6 = 16.0.
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Figure 9: Sensitivity of the skeleton at maxima of curvature. Two curves are shown with their respective medial
axis skeletons. The two curves are identical except near the maximum of curvature on the top of each curve. The
complexity measures of the curves are equal. The top curve has an additional skeleton branch because the magnitude
of curvature at the maximum is much greater than that of the bottom curve. The complexity measure of the skeleton
is very sensitive to subtle changes in the bounding contour, particularly near positive maxima of curvature.
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Figure 10: The complexity scale-space for the medial axis skeleton. The medial axis skeleton and the corresponding
bounding contour are shown at four scales. The scale parameter, 6, is doubled between each scale. Note that the
number of branches, as well as the number of features on the contour, decreases as the scale parameter increases.
The features that are present in each representation are depicted as accurately as possible in the square-error sense.
The small squares near each contour represent the initial data points of the contour.
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